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Abstract

In d dimensions, achieving a precise approximation of a varied function oscillating at
frequency k demands approximately kd degrees of freedom. When addressing the Helmholtz
equation in a numerical manner (with a wavenumber k within d dimensions), encountering
the pollution effect arises when, as k approaches infinity, the total necessary degrees of
freedom for sustaining accuracy escalates at a rate surpassing this inherent threshold. For
domain-centered approaches like finite element methods, this threshold grows faster than
kd. The development of numerical methods to solve the Helmholtz equation, which behave
robustly concerning the wave number, is a topic of intense research.

Keywords: Helmholtz Equation , High frequency ,Pollution Effect ,generalized FEM, MMAm

1 Introduction

Seismic waves provide valuable insights into Earth’s structure and seismic events. Advanced numerical
methods play a pivotal role in accurately modeling these waves, handling vast datasets, and improving
our understanding and predictive capabilities in seismology, earthquake studies, and resource exploration.

Such waves are governed by the wave equation :

∂2w

∂t2
−∆w = g

In our case, the inhomogeneity term g is time dependant :

g(x, t) = f(x)expikt

The solution of the wave equation is of the form w(x, t) = u(x)expikt, where the amplitude u(x)
satisfies the Helmholtz equation :

−∆u− k2u = f (?)

Due to the central role of the Helmholtz equation in linear wave propagation, significant attention
has been dedicated to examining the characteristics of its solutions, e.g their asymptotic behaviour as k
approaches infinity, and devising efficient methods for their computational determination.

In one-dimensional homogeneous media, Babuska and Ihlenburg , in their papers Ihlenburg and
Babuška (1997), have established optimal pre-asymptotic error estimates for Lagrangian polynomial
discretizations. The error is dissected into two distinct components: the best approximation error,
characterized by the order wphp, and the phase lag, with an order of w2p+1hh2p.

Notably, the error remains bounded regardless of frequency when the mesh step is approximately
h = w−1−1/(2p) The pollution effect persists for all p, as the mesh step must satisfy h = w−1−1/(2p) <<
w−1. Similarly, in the heterogeneous case, Frelet (2015) analyzed traditional high-order discretization

methods that frequently struggle to accommodate propagation media with fine-scale variations in the
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velocity parameter. This is because these methods typically utilize coarser meshes compared to low-order
techniques, making it challenging to capture the intricate details of the velocity field. If the velocity
parameter is enforced to be constant within each cell, either through averaging or local homogenization
strategies, there is a risk of losing fine-scale information, albeit partially. Additionally, constraining the

mesh step to maintain a constant velocity parameter inside each cell often results in a significant increase
in computational costs, especially in cases where the medium exhibits high heterogeneity.

In this paper, we will focus on the Helmholtz equation in both a homogeneous and a heterogeneous
medium, providing results regarding stability by going over resullts that were previously stated and
proven.

1.1 What is the pollution effect ?

When using numerical methods like finite element methods (FEM) or finite difference methods (FDM)
to solve the Helmholtz equation, the discretization of space leads to a system of algebraic equations.

The issue of pollution effect emerges as k increases. It’s observed that the number of elements or
degrees of freedom needed to maintain accuracy grows rapidly with k. Mathematically, the pollution
effect manifests as the computational requirements increasing faster than the natural expectation for
maintaining accuracy.

2 The homogeneous Helmholtz equation

2.1 Finite element spaces and Galerkin discretization

The Dirichlet-to-Neumann transformation:

The straightforward application of finite element or finite difference methods assumes discretization
over a bounded or finite domain. However, the Helmholtz equation is defined on a unbounded domain.
To resolve this issue, We introduce a ball B such that D ⊂⊂ B, thereby enabling the transformation of
exterior conditions into non-local conditions on ∂B.

Here is the translated version of the provided text:
Thus, the Helmholtz equation must be solved on the finite domain: Ω = B ∩Rd \ D̄
The equation (*) becomes:


-∆u− k2u = f on Ω

u = 0 on ∂D
∂u
∂n − iku = q sur ∂B

(1)

2.1.1 The variational formulation

Transformation of the problem: the variational formulation

Let H1(Ω) be the Sobolev space defined on Ω. Thus, we introduce: V = {v ∈ H1 : v|∂D = 0}.

We seek u ∈ H1(Ω) such that: a(u, v) = F (v) for all v ∈ V (1.2).

where: a(u, v) =

∫
Ω

∇u∇v − k2uv − ik
∫
∂B

uv and F (v) =

∫
Ω

fv +

∫
∂B

qv

Discretization Elements:

The Galerkin finite element method is obtained by replacing in equation (1) the infinite-dimensional
space V with spaces of finite elements.

Let τ = {δ1, δ2, ..., δn} denote a mesh of finite elements composed of simplicial or quadrilateral
elements. The mesh size is denoted by h = maxδ∈τ diam δ

Here’s the translation of the provided text:
Let Θ = {x1, x2, ..., xn} denote the set of vertices of τ that are not on the essential boundary ∂D.

For xi belonging to Ω, the local basis functions are given by:
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{
φ(xi) = δi,j , 1 ≤ i, j ≤ n
φ|δ is bilinear for every δ ∈ τ

The space of finite elements corresponding to the grid T is given by:

Vh = Vect{φi | 1 ≤ i ≤ n}

Therefore, the estimated solution uh is: uh =

n∑
i=0

Uiφi where Ui are scalars to be determined. (1)

becomes:

GGaluh = QGal(f, q) (1∗)

with:

GGali,j = a(φj , φi), 1 ≤ i, j ≤ n and QGal(f, q) = {F (φi)}1≤i≤n

2.2 On the stabilization of the Helmholtz equation in one dimension

Here, we demonstrate that in one dimension, there exists a Generalized Finite Element Method GFEM
without pollution for the Helmholtz problem (Ihlenburg and Babuška (1997)).

Without loss of generality, we consider the following problem:
−u′′ − k2u = f Ω = (0, 1)

u(0) = 0

u′(1)− iku(1) = 0

(2)

{xi} denotes a set of grid points, and the grid τh is composed of intervals ∆i = [xi−1, xi]. The
discretization of (5) yields a system of difference equations :

GGali−1,iui−1 +GGali,i ui +GGali,i+1ui+1 =

∫
∆i

fφi +

∫
∆i+1

fφi

B Showed that G and Q can be chosen in the following manner :

Gstabi,j = k2h
2tan( kh2 )



sin(k(xi+1 − xi−1))

sin(k(xi+1 − xi))sin(k(xi − xi−1))
si i = j ≤ n

e−ik(xn−xn−1)

sin(k(xn−xn−1)) si i = j = n

−1
sin(k(xi−xj)) si |i− j| = 1

0 otherwise

and (Qstabf)i = h
2tan( kh2 )

min(i+1,n)∑
i

tan(k xm−xm−1

2 )

xm − xm−1

∫ xm
xm−1

f(x)dx

xm − xm−1

Definition 2.1. Let W be a subspace of V ′ × H−1/2(∂B). For (f, q) ∈ W , let Uf,q be the solution of
the Helmholtz problem. We say that a finite element method exhibits the pollution effect if there exist
numbers r, s belonging to R, and t > 0 such that the error of the best approximation satisfies:

‖eh‖ ≤ Cf,qhrks (3)

and there exists a family of data, meaning domains Ωk, second terms (fk, qk) belonging to W , and
meshes τh characterized by the step size h = h(k), such that the error of the corresponding finite element
solution can be estimated as:

eh
hrks

≥ Ckt
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2.3 On the stabilization of the Helmholtz equation in one dimension with
Robin boundary conditions

In order to motivate a minimal requirement on the dependence of h on k, we consider the following model
problem:

−u′′ − k2u = f, in Ω = (0, 1),

u(0) = 0,

u′(1)− iku(1) = 0.

(4)

The exact solution is given by u(x) = exp(ikx). The best approximation in the space of continuous,
piecewise linear trial functions satisfies

‖u− uh‖Hs(Ω)

‖u‖Hs(Ω)
≤ Ch2−s ‖u‖H2(Ω)

‖u‖Hs(Ω)
≤ C(kh)2−s.

Hence, a minimal requirement for the relative error of the best approximation to be small is that kh
is small. In this light, the following assumption is very natural

2.4 Control of the Approximation Error

Babuska showed that under certain assumptions. The solution to the finite element solution corresponding
to Gstab and Qstab is pollution-free.

Lemma 1. Let f ∈ H1(0, 1) and u denote the corresponding solution of (2). Then, the following stability
estimate holds

‖u(s)‖0 ≤ Cks−2‖f‖H1(0,1)

Assume that the right-hand side f of equation (5) belongs to H1(0, 1) . Let Gstab et Qstab be defined
as above, and let Uf be the solution of (3). Then:

||(uf − u)′||0 ≤ ch||f ||1 given that hk ≤ π (5)

According to Definition 2.1, the stabilized finite element method is free from pollution.

3 Results and discussion

3.1 Numerical examples

In this part, we aim to demonstrate how pollution impacts the Galerkin Finite Element Method (FEM)
and the behavior of the stabilized FEM. Our selection for the right-hand side of the equation is f = 1+x2.

We denote by uh the solution to (1*).

k = 50

h =
π

100 ∗ k
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From the theory of ODE, we know that if f = 0, the exact solution takes the form :

uhomogeneous(x) = Aexp(ikx) +Bexp(−ikx)

Because the second term f is polynomial, we have to look for the particular solution of (*) in the
form

up(x) = ax2 + bx+ c

Identifying the coefficients, we get :

uparticular(x) = −1
k2 x

2 + 2
k4 −

1
k2

Therefore, the exact solution is given by :

u(x) = uhomogeneous + uparticular

u(x) = Aexp(ikx) +Bexp(−ikx) + −1
k2 x

2 + 2
k4 −

1
k2

A and B can be found with the help of the boundary conditions.
We then plot the exact solution of (4) :(de Recherche (2024))
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Figure 1: Plot of the exact solution

Furthermore, I.Babuska calculated the H1 norm of the error for various values of k.
The plot below shows the relative error in the H1 norm with respect to the number of unkonws.
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Figures 4.1 and 4.2 illustrate the impact of pollution in the Galerkin method. As the parameter h
decreases, the error curve converges toward the error curve of the optimal approximation. Conversely,
for larger values of h, the solution is significantly compromised. The range of h where the Galerkin
FEM solution is affected by pollution expands with increasing k. It is noteworthy that even when kh is
relatively large, falling within the range [1, 2], the stabilized FEM exhibits the anticipated asymptotic
behavior of O(kh). Figure 4.2 demonstrates that the stabilized FEM performs effectively on non-uniform
grids, while the pollution effect is more pronounced in the Galerkin FEM.

4 On the stabilization of the Helmholtz equation in two dimen-
sions.

Babuška and Sauter (1997) demonstrated that it’s not possible to completely get rid of pollution effects
in two dimensions. Using bilinear elements on a regular grid. They looked at increasingly larger areas
and used weighted norms to avoid issues at the edges. Despite being a simple model, the conclusions
drawn are thought to be applicable to practical situations e.g acoustic waves propagating through the
earth’s crust.

The central mathematical question revolves around whether, for this straightforward model, it’s
possible to select coefficients in the equations of a Generalized Finite Element Method (GFEM) in a way
that eliminates pollution. If achieving this in the simplified scenario proves impossible, the implication
is that it’s likely difficult in more general situations as well.

4.1 Setting

Let Ωn and Qn be defined by:

Ωn = (−cn, cn)2, cn ∈ N, cn < cn+1.

The homogeneous Helmholtz equation over the domain Ωn is given by:{
∆un + k2un = 0 on Ωn

Bnun = rn on ∂Ωn
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We consider GFEM discretizations with piecewise bilinear elements.

Let h ≥ 0 represent the step size satisfying h−1 ∈ R. The grid points are given by Θn = hZ2 ∩ Ωn.
The corresponding Cartesian grid τh consists of squares of side length h.

2µ = h(ν1, ν1 + 1)× h(ν2, ν2 + 1)

τh = 2νν∈Z2 ∩ Ωn

The MFEM is determined by defining a family of regular matrices Gh and functionals Qh that map the
right-hand side of (6.1) to the linear system vector.

We impose additional conditions that any reasonable MFEM method should satisfy.

1. The matrix Gh, depending on k, is sparse in the sense that for each nodal point x inside the domain,
the corresponding row of the matrix can be represented by a stencil with nine points.

2. Qh is local, such that for x inside the domain E0, the corresponding entry of the right-hand side
vector (Qhrn) is zero.

3. Ghn =

G2 G1 G2

G1 G0 G1

G2 G1 G2

 for all x ∈ Θint.

4. G0 =

∞∑
m=0

(G0)mα
2m, G1 =

∞∑
m=0

(G1)mα
2m, G2 =

∞∑
m=0

(G2)mα
2m.

5. We consider the main part of G as an approximation of a0(u, v) =
∫

Ω
(∇u,∇v).

For each MFEM satisfying the above conditions, there exists a family of domains Ωn and right-hand
sides rn with n = n(k, h) such that the error of the finite element solution unh compared to the exact
solution uexn can be estimated as:

|uexn − uhn|V−Ωn ≥ Ck3.5h3.

The norm ‖‖− is such that ||v||− = supw∈H1(R2)
|∫R2 ṽ(σ)ω̄dσ|
2π‖w‖H1(R2)

, where ṽ is the Fourier transform of v.

Thus, for k → ∞ and h chosen such that k3.5h3 = 1, the error of the best approximation tends to
zero, while the error of the finite element solution is greater than C. Therefore, the pollution effect is
inevitable in two dimensions.

4.2 Numerical Results

In this section we focus on using FreeFEM++, a powerful tool developed by the Laboratoire Jacques
Louis Lions at Sorbonne University, Paris. FreeFEM++ provides a user-friendly high-level language.

We propose an implementation of finite element methods for solving the Helmholtz equation in a 2D
space.

We consider a rectangular shaped domain Ω.

Here, border commands define the boundaries of the domain. Each border corresponds to a side of
the L-shaped domain. For example, B1 represents the bottom side, B2 the right side, B3 the top side,
and B4 the left side.
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Figure 2: The generated mesh of Ω

The mesh Th; declares a mesh object. The buildmesh command generates the mesh for the L-shaped
domain using the specified borders (B1, B2, B3, B4) and boundary discretization parameters(8 ∗ n, 8 ∗
n, 6 ∗ n, 10 ∗ n).

This formulation sets up the Helmholtz problem in a weak form suitable for finite element analysis,
with elements ∈ P 2 and the solve command is used to find the solution u with Dirichlet boundary.
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Figure 3: Plot of u

5 The heterogeneous Helmholtz equation

We study the Helmholtz equation defined in the one-dimensional heterogeneous domain (0, Z) with
absorbing boundary conditions.

− ω2

c2(z)u(z)− u′′(z) = f(z), z ∈ (0, Z),

−u′(0)− iω
c(0)u(0) = 1,

u′(Z)− iω
c(Z)u(Z) = 0,

(6)

Definition 5.1. We consider parameters c which are piecewise constant and non-increasing. Let 0 =
z0 < z1 < . . . < zL−1 < zL = Z, then we will note

c|(zl−1,zl) = cl ∈ R,

such that cl < cl−1. We will also note

1

c2 l
=

1

c2l
− 1

c2l−1

> 0.

5.1 Stability Results

Theorem 1. Stability of the Problem under Perturbations of the Velocity c Let u ∈ H1(0, Z) be a solution
of (8). Then,

w2‖c−1u‖2 + ‖u′‖2 + 2w2
L−1∑
l=1

b 1

c2
zl|u(zl)|2c ≤ C2

s‖f‖2.

Corollary. For all f ∈ L2(0, Z) there exists a unique Sw,cf ∈ H1(0, Z), such that Bw,c(Sw,cf, v) =∫ Z

0

f(z) ¯v(z)dz

In the following theorem, we demonstrate that the distance between the operators Sω,c and Sω,cε can
be controlled by the distance between c and cε in a suitable norm.

Theorem 2. For all f ∈ L2(0, Z):

‖Sω,cf − Sω,cεf‖w,c ≤ Cs,qw2‖c−2 − c−2
ε ‖1‖f‖.

Where Cs,q is a constant.

5.2 Finite Element Discretization

Theorem 3. Assuming that µh,pw,c ≤ ρ Then for all f ∈ L2(0, Z), there exists a unique element Sh,pw,cf ∈
V h,p such that :
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Bw,c(S
h,p
w,cf, vh) =

∫ Z

0

f(z) ¯vh(z)dz for all vh ∈ Sw,c.

(7)

We introduce a discretization step h = 1/nh with nh ∈ N , and the associated decomposition tj = jh,
for j ∈ {0, . . . , nh}.

Next, we define the discretization space as follows:

V h,p = {v ∈ H1(0, Z) | v(tj−1,tj) ∈ P, 0 ≤ j ≤ nh}

We do not assume that the mesh adapts to the jumps in the wave velocity c. Thus, it is possible
that c has jumps inside a mesh cell. While assuming mesh adaptation to c jumps would greatly simplify
the analysis, it is crucial to consider the general case. Indeed, in highly heterogeneous media, mesh
adaptation to c jumps could result in significant computational burden. On the other hand, our analysis
naturally covers coarse meshes, where the velocity parameter can change arbitrarily within the cell.

5.3 Multiscale Medium Approximation Method

The search for the solution to the variational problem equivalent to (8) implies that we are able to
compute the coefficients of the linear system. Among these coefficients are the integrals∫ Z

0

1

c2
φh(z)ψh(z)dz for all φh, ψh ∈ V h,p

In one dimension , the integral can be computed analytically, but not in 2D. Even with an analytical
formula (e.g., if the interfaces are polygons), the calculation can be costly as the quadrature varies between
cells. We propose an alternative approach: a cost-effective numerical approximation with an alternative
parameter cε. This is the Multiscale Medium Approximation Method. MMAm

Let φh ∈ Vh and a mesh cell (tj−1, tj). Either φ|(tj−1,tj)(z) = l̂h(
z−tj−1

tj−tj−1
) or l̂µ

p+1
µ=0 is the Lagrangian

basis of (0,1).
It is evident that calculating () for each combination of basis functions amounts to computing the

integrals. ∫ tj

tj−1

1

c2(z)
l̂µ

(
z − tj−1

tj − tj−1

)
l̂λ

(
z − tj−1

tj − tj−1

)
dz (8)

In finite element analysis, to accelerate the computations of (37), we precompute the quantities
with the Lagrangian basis of the reference cell. In the standard FEM method, these reference values

M̂µλ =

∫ 1

0

l̂µ(ẑ)l̂λ(ẑ) are calculated, and since c is assumed to be constant within each cell,

∫ tj

tj−1

1

c2(z)
l̂µ

(
z − tj−1

tj − tj−1

)
l̂λ

(
z − tj−1

tj − tj−1

)
dz =

h

cj
M̂µλ

The technique used in MMAm is similar to the standard finite element method but allows c to take
m different values within each cell.

M i
µλ =

∫ t̃i−1

t̃i

l̂µ(ẑ)l̂λ(ẑ)dẑ with t̃i = i
m are calculated for 1 ≤ i ≤ m and 1 ≤ λ, µ ≤ p+ 1.

So that :∫ tj−1

tj

1

c2(z)
l̂µ

(
z − tj−1

tj − tj−1

)
l̂λ

(
z − tj−1

tj − tj−1

)
dz =

m∑
i=0

∫ tij

ti−1
j

1

c2(z)
l̂µ

(
z − tj−1

tj − tj−1

)
l̂λ

(
z − tj−1

tj − tj−1

)
dz

=

m∑
0

1

c2j,i

∫ tij

ti−1
j

l̂µ

(
z − tj−1

tj − tj−1

)
l̂λ

(
z − tj−1

tj − tj−1

)
dz
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= (tj − tj−1)

m∑
i=1

1

c2j,i

∫ ˆtj−1

t̂j

l̂µ(ẑ)l̂λ(ẑ)dẑ

= h

m∑
i=1

1

c2j,i
M i
µλ

The computation of the linear system is m times more costly in MMAm than in the standard finite
element method. The construction of the linear system in the standard method is in O(np2d), whereas
for MMAm with m sub-quadrature cells, the complexity is in O(mnp2d). However, this step can be easily
parallelized as the calculations are local, with no need for communication between cells.

5.4 Non-fitting vs fitting mesh

In the realm of finite element methods (FEM) addressing interface problems, two primary classes emerge:
fitted-mesh FEM and unfitted-mesh FEM.Chen, Hou, and Zhang (2020) The fitted-mesh approach, de-
mands that the solution mesh align precisely with the interface. Deviation from this alignment threatens
the convergence of the numerical method. However, this body-fitting constraint imposes limitations,
particularly in scenarios featuring a dynamic or moving interface in our case the c is considered to be
piecewise constant. In such cases, the solution mesh must undergo regeneration at each time level,
rendering the fitted-mesh method less versatile.Chen and Zhang (2021)

In contrast, unfitted-mesh methods offer a more flexible alternative. These methods tend to alleviate,
and in some cases, entirely eliminate the restrictions imposed on the mesh. By doing so, they provide
a solution that is not hindered by the need for continuous realignment with the interface. This charac-
teristic makes unfitted-mesh methods particularly well-suited for problems involving dynamic interfaces
or scenarios where the geometry undergoes significant changes over time. The inherent adaptability of
unfitted-mesh methods enhances their applicability across a broader range of interface problems, making
them a valuable choice in diverse simulation and modeling contexts.

Figure 4: Non-body fitting (left) and body-fitting (right) meshes
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6 Conclusion

In conclusion, in two and more space dimensions, it is impossible to eliminate pollution effect. Neverthe-
less, our study of the numerical solution of the Helmholtz equation shed light on crucial aspects related
to the use of methods such as MMAm in diverse environments.

The results highlight the effectiveness of high-order polynomials and higher-order discretizations but
also underscore persistent challenges in highly heterogeneous environments, especially as the wavenumber
k tends to infinity.

The importance of choosing methods tailored to the characteristics of the problem is evident from
our analysis. While significant progress has been made, uncertainties remain, particularly in the pre-
asymptotic error estimation and the guarantee of a constant error.

The key findings from our exploration are as follows:

1. Advantages of High-Order Polynomials: MMAm applied to the one-dimensional Helmholtz prob-
lem demonstrates the benefits of high-order polynomials over low-order ones, leading to better
convergence and increased accuracy of the numerical solution.

2. Pre-Asymptotic Error Estimation: Despite detailed analysis, pre-asymptotic error estimation in
heterogeneous environments remains an open question, requiring further research for a thorough
understanding.

3. Superiority of Higher-Order Discretizations: Numerical experiments confirm the superiority of
higher-order discretizations on non-adaptive meshes, especially in environments with varied velocity
contrasts.

4. Challenges Related to Pollution Effect: The pollution effect in the numerical resolution of the
Helmholtz equation, particularly as k tends to infinity, represents a major challenge requiring
robust numerical methods.

The results emphasize the importance of choosing appropriate numerical methods, especially in hetero-
geneous environments. The effectiveness of high-order polynomials and higher-order discretizations is
highlighted, but caution is necessary in highly heterogeneous contexts.

7 Future Directions and Perspectives

The outlook of this study suggests several perspectives for future research:

• Further investigation into pre-asymptotic error estimation in heterogeneous environments.

• Exploration of guarantees for constant error in highly heterogeneous environments.

• Extension of MMAm to three-dimensional problems and incorporation of adaptive strategies.
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