

Convergence of a sequence

Ismail CHerkaoui

October 21, 2022

Question 1:

Let's prove this property by induction on n.

Initialization: $u_2 = 3$, so $u_2u_0 - u_1^2 = -1$. The property is verified for n = 1.

Induction: Assume the property is verified at rank n and show it at rank n + 1. By the induction hypothesis:

$$u_{n+2}u_n - u_{n+1}^2 = u_n^2 - u_{n+1}u_{n-1} = -(-1)^n = (-1)^{n+1}$$

This concludes the induction.

Question 2:

 $(Z/dZ)^2$ has a cardinality of d^2 , so by the Pigeonhole Principle, there exist $0 \le i < j \le d^2$ such that $(u_i, u_{i+1}) \equiv (u_j, u_{j+1}) [d]$.

As $u_n \equiv 3u_{n-1} + u_{n-2}[d]$ and $u_{n-2} \equiv u_n - 3u_{n-1}[d]$ for $n \geq 2$, by double rising and double descending induction, it is deduced that $u_{i+n} \equiv u_{j+n}[d]$ for all $n \geq -\min(i, j)$, implying that $(u_n[d])$ is j - i periodic, hence periodic.

Question 3:

Assume there exists k such that $u_k \equiv u_{k+1} \equiv 0 [d]$. As $u_{n-2} \equiv u_n - 3u_{n-1} [d]$ for $n \geq 2$, by double descending induction, it is deduced that $u_i \equiv u_{i+1} \equiv 0 [d]$ for $i \geq 0$, and in particular, $u_1 \equiv 0 [d]$, which is absurd.

Therefore, $(u_i, u_{i+1})[d]$ belongs to $(Z/dZ)^2 \setminus \{(0, 0)\}$ with a cardinality of $d^2 - 1$. By the Pigeonhole Principle, there exist $0 \le i < j \le d^2 - 1$ such that $(u_i, u_{i+1}) \equiv (u_j, u_{j+1})[d]$. $(u_n[d])$ is thus j - i periodic, so the smallest period T satisfies $T \le d^2 - 1$.

Question 4:

If $(u_n[d])$ is *T*-periodic, then for $n \ge 2$:

$$u_{n+1}u_{n-1} - u_n^2 \equiv u_{n+1+T}u_{n-1+T} - u_{n+T}^2 [d]$$

Using Question 1, it is deduced that $(-1)^n \equiv (-1)^{n+T} [d]$, and thus $(-1)^T \equiv 1 [d]$, which implies T is even for d > 2.